Computing the Gamma Function Using Contour Integrals and Rational Approximations

نویسندگان

  • Thomas Schmelzer
  • Lloyd N. Trefethen
چکیده

Abstract. Some of the best methods for computing the gamma function are based on numerical evaluation of Hankel’s contour integral. For example, Temme evaluates this integral based on steepest-decent contours by the trapezoid rule. Here we investigate a different approach to the integral: the application of the trapezoid rule on Talbot-type contours using optimal parameters recently derived by Weideman for computing inverse Laplace transforms. Relatedly, we also investigate quadrature formulas derived from best approximations to exp(z) on the negative real axis, following Cody, Meinardus and Varga. The two methods are closely related and both converge geometrically. We find that the new methods are competitive with existing ones, even though they are based on generic tools rather than on specific analysis of the gamma function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Talbot Quadratures and Rational Approximations

Many computational problems can be solved with the aid of contour integrals containing e in the integrand: examples include inverse Laplace transforms, special functions, functions of matrices and operators, parabolic PDEs, and reaction-diffusion equations. One approach to the numerical quadrature of such integrals is to apply the trapezoid rule on a Hankel contour defined by a suitable change ...

متن کامل

Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic

Powerful algorithms have recently been proposed for computing eigenvalues of large matrices by methods related to contour integrals; best known are the works of Sakurai and coauthors and Polizzi and coauthors. Even if the matrices are real symmetric, most such methods rely on complex arithmetic, leading to expensive linear systems to solve. An appealing technique for overcoming this starts from...

متن کامل

Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders

Rational Chebyshev approximations are given for the complete Fermi-Dirac integrals of orders — \, \ and f. Maximal relative errors vary with the function and interval considered, but generally range down to 10~9 or less.

متن کامل

Designing rational filter functions for solving eigenvalue problems by contour integration

Solving (nonlinear) eigenvalue problems by contour integration, requires an e↵ective discretization for the corresponding contour integrals. In this paper it is shown that good rational filter functions can be computed using (nonlinear least squares) optimization techniques as opposed to designing those functions based on a thorough understanding of complex analysis. The conditions that such an...

متن کامل

Computing hypergeometric functions rigorously

We present an efficient implementation of hypergeometric functions in arbitraryprecision interval arithmetic. The functions 0F1, 1F1, 2F1 and 2F0 (or the Kummer U -function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007